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Abstract.Necessaryandsufficientconditionsfor theoccurrenceofstrongcurvature
singularities as definedby Tipler and Królak are derived.It is shown that both
necessaryandsufficient conditions involvenot only the divergenceof tetradcom-
ponentsof the Riemann, Ricci or Weyl tensorbut also the divergenceof their
integralsalongnonspacelikegeodesicsrunninginto thesingularity.

1. INTRODUCTION

Let M be a space-time,by which we meana smoothmanifoldM havingdimen-

sion n = 4 equippedwith a smoothmetric g of Lorentzian signature(—, +, +,

For a timelike geodesic‘y : [0, v
5) —s’M e set J~(’y)(wherea E [0, vs)) to be

the setof mapsZ [a, u~)~ v i-~Z(v) E T~(~)(M) for which

D
2Z

(1) —=R(K,Z)K
dv2

(where K is the tangentvectortoy) and Z(a) = 0, DZ/dVIaEH
7(O) whereH7(9)

is the subspaceof T~ consistingof vectorsorthogonalto K. Fora null geodesic
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[0, v~)—*M we set~ to be the set of mapsZ : [a, v~)~ u ~ 2(v) E

for whichequation(1) holdswith Z substitutedforZ, Z(a) = 0 andZ(a) ESy(a)~

whereS~(~is the quotient of H~(
0)consistingof equivalenceclassesof vectorsin

Hy(a) whichdiffer only by a multiple of K(a).
Maps Z, Z are called Jacobifields and (1) is Jacobi’sequation.The correspon-

dencesJ~(y)3 Z ~s~DZ/dVfQEH(a) and J~(y)~ Z ~+DZ/dV~aES~,(~ are linear

isomorphisms.
If y is timelike we assumethe parametrizationis by propertime and we set

E, E, E, E = K to be an orthonormaltetrad parallely propagatedon ‘y. If y is

null we assumeit is affinely parametrizedand the tetradis chosenpseudo-ortho-
normal (i.e. E, E, spacelikeand orthonormaland E, E null with g(E,E) = — 1)

1 2 34 34
againwith E = K.

4

For a timelike geodesicy threelinearly independentelementsof ~y) define
a volume element~i(v) = Z(v)AZ(v)AZ(v)E A

3(H ~) at each point y(v)
1 2 3

of ‘y. The map ~ : A3(H
7(5~)..+IR defined by ,~(AA B A C) = det [A’, B’, CkI

(i, j, k = 1 . . . 3) is independentof the choice of an orthonormal basis with
E = K. We shall denoteL~(p(v))by V(v). Similarly if y is null two linearly indep-

endent elementsZ, Z of J (y) define an area elementv(v) = Z (v) AZ (v) E

E A
2(S(U)), and the map ~ :A2(S~)~~ defined by ö(B A ~ = det [B~, C1]

is independentof the choice of the pseudo-orthonormalbasis (i,j = 1, 2). We

set ~(v(v)) = V(v).
We considerthe following two conditions on a timelike (respectivelynull)

geodesicy, which havebeenusedby different authorsto definestrongcurvature

singularities.
Condition (7): For all a E [0, v) and any Z, Z, Z EJ(’y) (respectivelyZ,

1 2 3 a 1

Z E J (y)) we havethat liminf V(v) = 0 (respectivelyliminf V(v) = 0).
2 a

Condition (K): For all a E [0, u
3) and any Z, Z, Z E J~(’y)(respectively Z,

Z EJa(7))we have that thereexists E (a, v1) with dl V(v)I/dvl5 <0 (respecti-

velyd~V(v)l/du10 <0).
The idea of a strong curvaturesingularity was introducedby Ellis andSchmidt

[1]. A strong curvaturesingularity was distinguishedby the property that all

objects falling into it are crushed to zero volume,no matter what the physical
propertiesof the object are. The conceptof a strong curvaturesingularity has
beendefined in precisemathematicalterms by Tipler [2]. Condition (7) above
correspondsto his original definition; but it is equivalentto the publisheddefini-
tions where <dim inf>> is replacedby <dim>> becausethe length scalex (resp.~)
for which V = x

3 (resp. V = ~2) satisfiesa propagationequation,discussedbelow,
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that makesit a concavefunction of the affine parameter,provided that the null
convergencecondition holds. It wasconjecturedby Tipler et al. [3] and indepen-
dently by Krdlak [4~ that all singularities in physically realistic space-times

shouldbe of strongcurvaturetype.
The significance of this conjecturelies in a theoremprovedby Krclak which

says,roughly, that if the conjectureis true andseveral regularityconditionsare
fulfilled then the weak versionof Penrose’scosmic censorshiphypothesisholds
[5, 6]. It was realisedby Kr6lak that for the proof of this theorema weaker
restriction on the convergenceof geodesicsthan that implied by Tipler’s defini-

tion is sufficient. This led to the definition of a strongcurvaturesingularitygiven
by condition(K)~

It was shown by Tipler [2] that thereis a lowerboundto the rateof the Ricci

tensorgrowth along null geodesicssatisfyingcondition(7) in a conformally flat
space-time.In section 2 of this paper we shall set necessaryconditionsfor the
growth of Riemanncurvaturealong both timelike and null geodesicssatisfying
conditions(1) and (K). We wereable to improve thelower boundon the growth

of Ricci curvatureset by Tipler. In Section3 we give sufficient conditionsboth
for timelike and null casesfor the growth of Ricci curvaturein orderthat condi-
tions (7) and (K) shouldbe fulfilled. We also give sufficient conditions,in the

null caseonly, for the growth of the Weyl tensor.In section4 we expressthe
necessaryand sufficient conditions in terms of a comparisonwith power law

behaviour.
The generalconclusionis that the occurrenceof strong curvaturesingularities

implies the divergencenot only of various tetradcomponentsof the Riemann,
Ricci and Weyl tensorsbut also of their integralsalong geodesicsapproaching
the singularity. Also certain integrals of componentsof curvaturetensorsmust
tend to infinity in order thatstrongcurvaturesingularitiesmay arise.

2. NECESSARYCONDITIONS FOR THE OCCURENCE OF STRONG
CURVATURE SINGULARITIES

2.1. General results

We first prove two lemmaswhich constitutethe basis for the proofsof all the
necessaryconditions.

LEMMA 1. Supposef: [0, v~)-÷ lR is integrableand satisfies

(Us (U’

(2) f~o~jdv’] dv”f(v”)<oo.

0 0
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Then for all 77> 0, there existsc(77)E [0, t~)such that for all a, v with c~ a ~ v

wehave

Q(a, v) =fdv’fdv”f(v”)<~. U

Proof By integrationby parts

(U

Q(a~v)=] dv’(v—v’)f(v)

a

Hencewe concludethat

Q(0, v) —Q(0, a) = / dv’(v —a)f(v) —Q(a, v)

Jo

i.e.

(U pU

Q(a, v) ~ Q(0, v) — Q(0, a) dv’ } dv” f(v”) -

a 0

But, by Cauchy’sprinciple of convergence,the convergencein (2) implies that,

for csufficiently close to U
5, and all a> c, this integralis less than~1,thusproving

the lemma.

LEMMA 2. Let A : [0, v3) -÷ Mk, B : [0, v) -÷M1befunctionsintegrableon compact
sets,whereMr is thesetof real r x r matrices. Let P : M1 -+ Mk be continuousand

homogeneousof degree A, and let q : IR” -+ R be a positive-definitequadratic

form. Supposethat

(Us (U’

(3) J dv’] dv” II A(v”) J<
0 0

JUSJU’ I! P(f dv” II B(v”) ii) 11<

(where denotesthe mappingnormfor matricesand theEuclidean normfor
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vectors).

Then thereexists an a E [0, v5) suchthat, for any vectorYa’ E Rk with Y~’j~= 1,
the solution Y to the system

d
2Y(v)

(5) = A(v) Y(v) + P(~)Y
dv2

d
(6) — q(Y(v)) ~(v) = q(Y(v)) B

dv

with initial conditions

(7) dY/dvIa=Y~

(8) Y(a)=0

(whereY, ~ are continuouson any closedinterval [a, vJof [0, v
5)) satisfies

(9) llY(v)—(v—a)Ya’Il~<~2(v_a)

for alivin [a,v5). U

Proof Wechoosea by applying Lemma(1) to (3) and(4) sothat

pU fU

(10) ,f dv’) dv” A(v”) <a

a a

(11) ~ IIp(fUBv~~ dv”) ll<~

wherea andj3 areconstantsto befixed shortly.
From(7) we note that thereexistsö > 0 suchthat

IIY(a + o)—~Y,ll~o/2

andsoif we define

(12) b =sup{v a <v<v5 and lIY(v)—(v—a)YlI~ 1/2 (v—a)}

then we know that b >a + ö >a.
We require to show that (9) holdsfor all v E [a, t~),i.e. that b = v~.To do this,

we procedeby contradiction:assumethat b <v5, in which casewe should have
tnat equality held in the condition in (.12) at b (for if not thenb could be in-
creased).In otherwords
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(13) IIY(b)—(b—a)Y11= 1/2(b—a).

From(5)

(U q(Y(v’))

(14) ~(v)=I B(v’)dv’J q(Y(v))
a

and(12) gives

q(Y(v’)) 9M

q(Y(v)) m

(from(l2) with v~b)where

M=supq(x)/~jxj~2

= inf q (x)/ x 112.

Whence(14) becomes

çU

II ~(v)lI~Ki] IIB(v’)IIdv’
a

with K
1 = 9M/m.

Integrating(5) thengives,for v <b, using(12),

I~(v)_YI~_(v_a)[fIIA(v’)IIdv’]+

+ KIXJ II ~fU B(v”) II dv”) dv’

and integratingagain

3
llY(v)—(v—a)YlI~~(v~a)[a_K1A13].

Thus if we choosea and(3 so that

(a+K~’j3)<—
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thenwe obtainacontradicitonto (13), thusprovingthe Lemma. U

2.2. Necessaryconditionsfor the case(T)

We considerthe timelike caseexplicitly, but an identical argumentservesfor

the null case.
Supposecondition (7) holds. Consider an infinite sequence{ v. } such that

lirn v. = v
5 -

Let A~= [Z(v1), Z(v1), Z(v,)] and e. = det A1. The characteristic polynomial

det (Al —A,) must have a root of magnitudenot greaterthan 6,11/3;i.e. there
exists a vector X, (possiblycomplex) with AX1 = such that I I I e~1/3.

Introducing a vector Y. definedby V. = X.’ Z + X.
2Z + X.3 Z we have Y. =

I S I 2 3

= p~.By condition (1) we can choose v, so that e. -÷ 0, andhence lirn i.z~= 0.

So, if we now scaleX, so that IID~/dvall = 1 then we have that, for any in
[0, v

5) the following conditionholds.

Condition (T)~:For all e>0and all d E (a, v5), thereis aJacobifield Y
with DY/dy all = 1 and Y(v’) 11< e for somev’ E (d, v5) dependingon � andY.

Note that we have provedthis for complexY. But the real andimaginaryparts
will separatelysatisfy the Jacobiequationand will have Y(v’) 11<6,soin condi-
tion (7),, Y can be taken asreal.

PROPOSITION1. For both timelike and null case, if condition (7) issatisfiedthen

for somecomponentR’. of the Riemann tensor in a parallely propagated frame
the integral

(U çU

I’1(v)= j dv’J dv”1R
1

414(v”)I

~

does not converge as v —p v~ U

Proof We show the contrapositiveform of the result: that if I’1(v) doesconverge
for every i, / thencondition (fl,~is falsefor somea; i.e. that thereexista, d and
e such that II Y(v)11>e for all v E (d, v5) and all Jacobi fields Y EJa(7) with

lIdY/dvlall= 1.
We apply Lemma 2. We let the matrix A havecomponents R’~,1~and we

put P(s)= 0. Equation (5) then becomesthe Jacobi equation.Thus, if the
integralsI’1(v) converge,it follows from Lemma 2 that thereis an a suchthat

~ —(v—a)Y,~II~1/2 (v—a) for all v in [a, v5). This implies that [“II>
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>l/2(v—a)>l/2(~—a)=eforv>a+1/2(t~.—a)=d,say.Inotherwords,
(T’)

9 is falsified with this choice of a, as required. U

One would also like to know the necessary conditions for strong curvature

singularities to occur in terms of the Ricci and Weyl tensorssince thesehave
a well-known physicalinterpretation (see [7] chapter 4). To do so one must

analysetheJacobiequationin moredetail.
Let A(v) be the matrix given by A(v) = [Z(v), Z(v), Z(v)] where Z(v), Z(v),

Z (v) are three linearly independent Jacobi fields in .f~ (‘y). Let K be the matrix

defined by K = A~dA/dv. K can be expressed uniquely asK = W + ~ + (1/3)81
where Wis the antisymmetricpart of K (called the vorticity matrix), ~ is the

symmetricpart of K (called the shear matrix) and 8 is the trace of K (called
theexpansionscalar).I is the unit matrix.

The equationsfor the propagationof W, E and 0 are derived in chapter4

of [7]. From the propagationequationfor Wit follows that if W vanishesinitially

then it must vanish everywherewhereverA is nonsingular(see [7] p. 87). This
is thecasefor Jacobifields in J~(’y).

The propagationequationfor 0, known as the Raychaudhuriequation,has
the form

dO 1
— = — — ~2 — 2a

2 —R~
dv 3

where 2a2 = tr(~2).Since V = det A, by a well-known formula we have that

1 dV
0= — —

V dv

Putting x = V3 we can convert Raychaudhuri’s euqation into the second order

linear ordinary differential equation

d2x 1
(17) — =—— (2a2+R~),

dv2 3

A similar equationis obtainedin thenull casewith 1/3replaceby 1/2 in equation

(17). Note that x representsa length characteristicof the volume element V.

For the rest of the paper all quantitiesderived from K with a hat will refer

to null geodesics.
As far as the sheartensoris concerned,we shall only needits propagation

equationfor the null case.It hasthe form
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(18) — =—C—8~
dv

where C is a matrix with componentsCtm,, = Ctm
4,,4. Putting 8 = (2/x)(dx/dv)

we canexpressequation(18) as

d
(19) — 22~2.. —2

2c.
dv

Since V = x3 and V = 22 we can give a condition for the occurrenceof strong

curvaturesingularitiesequivalentto condition(7) in terms of x and2 as follows.

Condition (7)’: For all a E [0, v
5) and all solutions x(v) of equation (17)

(respectivelysolutions 2(v)) with the initial condition x(a) = 0 (2(a) = 0) we
havethat liminf x(v) I = 0 (respectivelyliminf 12(v) I = 0).

From now on we shall assume that R44> 0 both in the timelike and in thenull

cases.This assumption,calledthe timelike or null convergenceconditionis reaso-
nableon physicalgrounds(see[7] article 4.3).

We shall be ableto providegeneralnecessaryconditionsfor a strongcurvature

singularity to occur in terms of the Ricci and the Weyl tensoronly for null

geodesics.

PROPOSITION2. If y(v) is a null geodesicand condition (7)’ is satisfied then
either the integral

pU pU

K(v)=j dv’] dv”R~(v”)

0 0

or tile integral

Lm~(v)~ dv” Cm4,,4(v”’)l)

for somein, n doesnot converge.

Proof The proofproceedsin exactlythe samewayas the proofof proposition 1.
We first note that by putting A(v) = —(l/2)R~(v),B = —C, P(E) = 1/2 tr Z

2,

Y(v) = 2(v) and q(2) = 22 in equations(5) and (6) we obtain propagationequa-
tions for the characteristiclength 2 and the shearmatrix ~ describedin this

paragraph.We then show the contrapositive form of the result by applying
Lemma2. •
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2.3. Necessaryconditionsfor thecase(K)

Again we consideronly the timelike case explicitly. An identical argument
holds for the null case. Supposethat condition (K) holds. We may suppose

also that the stronger condition (7) does not hold, so that, for a sufficiently

closeto v5, liminf V(v) I> 0.
V*Us

Writing as before A(v) = [Z (v), Z (v), Z (v)] and V(v) = det A(v), we have
1 2 3

by a well-known formula, dV/dy= Vtr(A~dA/dv). Thus condition (K) implies

that for somev0, tr(A
1dA/dv) IUO < O.~Let Y = Z(A(v

0Y’)’1, so that Y(v0)
1 =

=~ii.
Then

dA d
tr A 1 — = tr — [A(v)’ A] L =

dv dv 0

U

0

d
= tr — [Y(v), Y(v), Y(v)] =

dv 1 2 3 00

dY’ dY I d

=—~_g(Y,Y)IU0.

Thus condition (K) implies that for all a in [0, v5) the following conditionholds:

Condition (K’)a: There is a Jacobifield YE .J~,(’y)suchthat

d
—g(Y,Y) <0
dv 00

for somev0E (a, ti).

PROPOSITION3. For both the timelike and null cases,if condition (K) is satisfied
thenfor somecomponentR414of theRiemanntensor in a parallely propagated

framethe integral

U

doesnotconvergeas v —~ v5.

Again we prove the contrapositiveby showing that, if all the Jr,, converge,
then an a can be found such that (d/dv)g(Y,Y) > 0 for all Jacobi fields Y in
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The convergenceof P,(v) implies that the double integralJ’1(v) in Proposition

1 converges as well. Thus applying Lemma 2 in the samemanneras in the proof
of PropositionI we canensurethat thereexistsana suchthat

IlY(v)—(v—a)Y~II~l/2(v—a)

for all v in [a, v5).
SinceJ~,(v) convergewe canalsochoosea so that

U IL
for all v in [a, v5). Then from the inequality (15) in the proof of Lemma 2 we

have that

dY
II — —“Il~—(v—a).

dv 4

Whence

~

dY 3
+~gY, — —Y ~— (v—a).

dv 4

Thus

g(Y, _—)>g(Y,(v_a)Y)_Ig(Y, __)_g(Y,(v_a)Y~)I>

— (v—a)>0.
4

This gives the required contradiction.

Again we shall provide necessary conditions in terms of the Ricci and the
Weyl tensors for the null case.Using the characteristiclength function 2(v)

condition (K) canbe expressedas
Condition (K)’: For all a E [0, v5) and all solutions x(v) of equation (18)

(respectivelysolutions 2(v)) with the initial condition x(v) = 0 (2(v) = 0) we
have that there exists v1 E (a, v5) with
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dlx(u)I d12(v)I
<0 resp. <0.

dv dv
U, U

PROPOSITION4. If 7(v) is a null geodesicand condition (K)’ is satisfied then

either the integral

p
0

M(v)=) dv’R~(v’)

0

or theintegral

Nm,,(v)=f dv’(L dv” Cm
4,,4(v”) ) 2

for somein, tz doesnot convergeas v -+ v5. U

Proof. Weagain prove the contrapositive of the result. Weassume that the integrals

M(v) andNm,,(v) converge.With theidentificationsmadein the proofof Proposi-
tion 2 we havefrom Lemma2 that thereexistsan a in [0, v5) suchthat

2(v) —(v—a)2,~I~(3/2) (v—a)

for all vE [a, v5), where 2 = d2/dv Ia~We choose = 1/2 (v5—a). It also follows
that inequality(15) in the proof of Lemma2 holds for all vE [a, v5).

Thus since the integrals M(v) andNm,,(v)converge,choosinga sufficiently close

to v3 we havethat

Id2/dv—2,I~l/2(v—a)

for all v in [a, v5). Hence

d2/dv>2~—Id2/dv—2,I>2,—l/2(v_a)>l/2(v5---a)>o.

Thuswe haveshownthat thereexistsan a and a solution of equation(1 7) (with

1/2 substitutedfor 1/3 on theright handside)with the initial condition
2(a) = 0

suchthat d 2 /dv> 0 for all v E [a, v
5). This contradictscondition(K)’.

Comment.Thenecessaryconditionsderivedin propositions2 and 4 are stronger

than the conditions given in Propositions 1 and3. It is possibleto haveacurvature
tensorforwhich theintegralsinPropositions1 and3 diverge,but theintegralsin Pro-

positions2 and 4 converge.Forexample,takeR~= 0 and

= C
tm

4,,4= [(t~— v) log (v5 — v)]~ (m,n = 1, 2).
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It can be shown that the divergenceof the integrals in Proposition 1 can be

deducedfrom the divergenceof those in Proposition 2, and the divergenceof
the integrals in Proposition3 can be deducedfrom the divergenceof thosein
Proposition 4.

3. SUFFICIENT CONDITIONS FOR THE OCCURRENCE OF STRONG
CURVATURE SINGULARITIES

In order for the volume V(v) (or V(v)) to have inferior limit equal to zero
it is not sufficient that one Jacobifields shouldbe focussedto zero, for the

effect of this on the volume may be compensatedby the otherJacobi fields
becominginfinite. Thereforeone must study the equationsthat determinethe

behaviourof V(v) and V(v), i.e. the propagationequationsfor the characteristic
lengthsx(v) and 2(v) and the shearmatrices~ and ~. Thusour sufficient condi-

tionswill be espressedin termsof the Ricci and the Weyl tensors.

PROPOSITION5. For both the titnelike and the null cases,if the integral

PU (U

/ dv’ / dv” R~(v”)

Jo ~

divergesthencondition(7) is satisfied.

Proof It is clearly sufficient to prove, taking Jacobifields in J~~(’y)for any a E
E [0, ~), that for any 6>0, if (17) is satisfied with x(a) = 0, x’(a)>O, then
thereexists b E (a, v3) such that x(b) <e. Supposethe contrary.Then we have
x(b) >1 for someland all b in [a, v5). But then (17)becomes

d
2x I

— <— —R~
dv2 3

and the divergenceof

rUs ~o’J dv’) dv”R~(v”)

0 0

thencontradictsx(b) > 1. An identicalargumentholdsfor the null case. •

An almost identical argument(using the fact that if initially x ‘(a)> 0, then
thereexist I and c with a <c < v

5 and x(v)> I for v > c and u less than the first
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maximum of x) showsthat the following propositionholds.

PROPOSITION6. For both the timelikeandnull cases,if the integral

fdv’R
44(v’)

diverges to infinity, then condition (K) is satisfied. U

A more difficult problem concernssingularitiesinducedby the Weyl curvature
Cm4~4.Here we may have no reason to supposethat Cm4~4>0, and so the
most naturalcondition physically would involve integralsof I Ctm4~4L But it is

possible for an integral of Cm4,,4 to diverge while C
tm

4,,4 oscillates in sign in
such a way that no singularity is induced. This oscillation is analysedin the
treatmentof Szabados[8]. Here we consider,in the null caseonly, whathappens

if oscillation in excludedby supposingthat, for somem andn, ~ has a fixed
sign.

PROPOSITION7. If 7(v) is a null geodesicand, for somem, n we haveC
tm

4,,4>0

or C”4,,4 < 0 and theintegral

~ I C~~,,~(v”)~

diverges,then condition (7) is satisfied. U

Proof We considerthe casewhen C”~,,4.(0. The proof for the caseCm4,,4>0

is almost identical. As in the proofof Proposition5 we suppose that condition
(7) is not satisfied; that is there existsa solution 2(v) of equation (17) with

initial conditions
2(a) = 0 and 2’(a) >0 such that 2(b)>l for some 1 and all

b in [a, v
5).

Then from equation (19)

d
_22~m >l

2ICm
4 I.

dv

Hence

(5)

22±m>12 dv’I C
m

4,,4(v’)j.

a
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Therefore from (17)

2

d22 2 12 pU
2 <(~j dv~ICm

4,,4(v~)I)=dv 2 x
a

2
l~ (U

—-i I dv’IC
m

4,,4(v’)I ~
2x J

a

l~ 2(J dv’ICm4,,4(v’)I)
2(v —a)

a

Integratingtheaboveinequalitytwicewe obtain a contradictionwith the supposi-

tion2(v))ol. U

In thesamewayas for proposition 4 we canshow

PROPOSITION8. If 7(v) is a null geodesicand,for somem, n, wehaveCm4,,4>0

or Cm4,,4< 0 and the integral

fUdvl(LU~dv~?I Cm4,,4(v”)I)

diverges,thencondition(K) is satisfied. U

It is not possible to write down a condition that is bothnecessaryandsuffi-
cient for case (1) or (K), evenin thenull case,without an analysisof the rotation

of the eigenvectorsof the Weyl tensor(i.e. of oscillations in its components).
However analysing the propagation equations for expansion and shear in the
null case we are able to obtain the sameexpressionsfor both necessaryand

sufficient conditions (compare Proposition 2 with Propositions 5 and 7 and
Proposition 4 with Propositions6 and8).

4. COMPARISON WITH POWER LAW BEHAVIOUR

All the preceeding propositions yield corollaries in which conditions (7) and
(K) areexpressedin termsof a comparisonwith powerlaw behaviour.

COROLLARY 1. Let 7(v) be either a timelike or a null geodesic.Let R’414(v)
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be a componentof the Riemanntensor in a parallely propagatedorthonormalor
pseudo-orthonormal(if y is null) frame.If, for all i, landsomefixed constantK.

we have R’414 I ‘~ K(v — v)~, then for a < 2 condition (7) cannotbe satisfied;
whilefor a < 1 condition(K) cannothold. U

Proof Theproof follows immediatelyfrom Propositions1 and2. U

COROLLARY 2. Let 7(v) be a tiinelike geodesicand let R~and C
tm

4,,4 be the
componentsof the Ricci tensor and the Weyl tensor in a parallely propagated

orthonormalframe. If, for somefixed constantK andsomem, n we haveR~“~

~ K(v~— v)~,I C
tm

4,,4I s~K(t~— vY’~with a = /3 < 2, then condition (T) cannot
be satisfied;whilefor a < 1 and(3 < 3/2 condition(K) cannothold. U

Proof The prooffollows from propositions2 and4. U

COROLLARY 3. Let the conditionsof corollary 2 be satisfied.If for somefixed
constantK either

R~>K(v5 —

or, for somem, n,

Cm4,,4>K(v~— vY’~

then for 3= a> 2 condition (7) bolds, while for /3> 3/2, a> 1 condition (K)
holds. U

Proof The proof follows from Propositions5,6,7 and8. U

5. CONCLUSION

In conclusion we stress that the occurrence of a singularity satisfying (7)
does not in itself guaranteethe existenceof conjugatepoints on null geodesics.
This is well-illustrated by the case

C’ —0 R ~v~—M~’v—v~
2

4f4~ ‘ 44\ J~ I~

on a timelike geodesic,whereit is anelementaryexerciseto solve thedifferential
equation for x and find that for M’( 3/4 conjugatepoints do not occur, while
for M> 3/4 they occur arbitrarily close to the singularity. But in bothcases(by
Corollary 3) condition(7) is satisfied.

Sufficient conditionsfor the occurrenceof conjugatepoints in termsof the

infimum of IR’
4141 on boundedintervals have been derivedby Newman [9].
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Sufficient conditionsfor the occurrenceof conjugatepoints alongnull geodesics

in terms of integrals of Cm4,,4havebeenderivedby Szabados[8].
The sufficient conditionsderived in section 3 and 4 provide a usefulcriterion

for determining whethera given non-spacelikegeodesicterminatesin a strong

curvature singularity. One possible application would be to determine whether
any of the non-spacelikegeodesicrunning into the nakedsingularity recently
investigated by Christodoulou[10] satisfiesconditions(7) or (K).
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